Computationally Efficient Robust Estimation of Sparse Functionals

نویسندگان

  • Simon S. Du
  • Sivaraman Balakrishnan
  • Aarti Singh
چکیده

Many conventional statistical procedures are extremely sensitive to seemingly minor deviations from modeling assumptions. This problem is exacerbated in modern high-dimensional settings, where the problem dimension can grow with and possibly exceed the sample size. We consider the problem of robust estimation of sparse functionals, and provide a computationally and statistically efficient algorithm in the high-dimensional setting. Our theory identifies a unified set of deterministic conditions under which our algorithm guarantees accurate recovery. By further establishing that these deterministic conditions hold with high-probability for a wide range of statistical models, our theory applies to many problems of considerable interest including sparse mean and covariance estimation; sparse linear regression; and sparse generalized linear models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computationally Efficient Robust Sparse Estimation in High Dimensions

Many conventional statistical procedures are extremely sensitive to seemingly minor deviations from modeling assumptions. This problem is exacerbated in modern high-dimensional settings, where the problem dimension can grow with and possibly exceed the sample size. We consider the problem of robust estimation of sparse functionals, and provide a computationally and statistically efficient algor...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Piece-wise quadratic approximations of arbitrary error functions for fast and robust machine learning

Most of machine learning approaches have stemmed from the application of minimizing the mean squared distance principle, based on the computationally efficient quadratic optimization methods. However, when faced with high-dimensional and noisy data, the quadratic error functionals demonstrated many weaknesses including high sensitivity to contaminating factors and dimensionality curse. Therefor...

متن کامل

Sparse Gauss–Hermite Quadrature Filter with Application to Spacecraft Attitude Estimation

A novel sparse Gauss–Hermite quadrature filter is proposed using a sparse-grid method for multidimensional numerical integration in the Bayesian estimation framework. The conventional Gauss–Hermite quadrature filter is computationally expensive for multidimensional problems, because the number of Gauss–Hermite quadrature points increases exponentially with the dimension. The number of sparse-gr...

متن کامل

Robust Sparse Phase Retrieval Made Easy

In this short note we propose a simple two-stage sparse phase retrieval strategy that uses a near-optimal number of measurements, and is both computationally efficient and robust to measurement noise. In addition, the proposed strategy is fairly general, allowing for a large number of new measurement constructions and recovery algorithms to be designed with minimal effort.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1702.07709  شماره 

صفحات  -

تاریخ انتشار 2017